"참된 지혜는 실용적인 지식들의 무분별한 집적을 통해서 얻어지는것이 아니라, 모든것들을 통해서 자신을 드러내는 하나의 것을 파악하는데 있다. " - 헤라클레이토스 -

2024/07 16

Diogenes1.1(up)버전 업데이트 새 기능 추가

기존 1.1버전에 새기능이 추가된 1.1(up)버전을 업로드 합니다. (7/23일 기준)* 지난주 번호(즉, 최신 횟차의 번호중 몇개를 임의대로 집어넣고 조합합니다.)  다운은 여기서 디오게네스 업데이트 버전(버전명수정)Diogenes1.1(up)버전 : 지난주 결과값 반영하기 추가. (7/23일 기준)자세한것은 프로그램내 공지 참조.. -------------------------------------------------------------- ■ 업데이트 내역. (2024/7/23기준) ■ 1. 지난rosehill.tistory.com

김민기 다큐멘터리 3부작

우연찮게 웨이브(wavve)에서 다큐를 보려다가 대개는 ebs쪽을 먼저 보게 되는데, 이날은 특이하게 sbs스페셜을 선택해봤다. 열자 마자 바로 김민기 관련한 다큐멘터리를 발견하게 된다. 물론 이 전에도 sbs스페셜을 몇번 본적있고 아마 이때도 이 다큐가 있다는것을 알기는 알았을테다, 그러나 이날은 갑작스레 눈에 더 확 들어 온것이다. 그것은 이날 컴퓨터를 들여다 보면서 오후쯤엔가 김민기님의 별세 소식을 접했는데 그것의 영향도 있었을테지만, 그것만으로 설명하기에는 다소 미흡할 정도로 어떤 끌림이 있었던것같다.  sbs스페셜에서 지난 4월에 3부작의 다큐멘터리를 만들어 놓은것으로 보이는데.이때가 학전 소극장이 폐관되고 그 이후에  방송이 된 듯하다. (만들어지긴 그 전에 만들어졌을것이고..) 우리 음악역사..

!.. 일상 2024.07.23

아이튠즈 읽기 쓰기 에러 및 잡설.

어제 7월 22일.. 낮부터 컴퓨터 상의 프로그램 itunes쪽에 문제가 생겨서 이를 해결하느라고 골머리를 썩고 있었다. 갑자기 읽기 쓰기가 되지 않았던 현상이 나타나면서 .itl파일을 읽지 못하는 현상이 었었는데, 즉, 보관함에 잘 연결되어 itunes가 실행이 되어야 함에도, 자꾸 읽지 못한다고 하면서 프로그램이 실행이 되지 않는것이었다.가벼운 검색을 통해서 보면, .itl파일을 (정확하게는 iTunes Library.itl) 읽기 전용을 해제하면 되는것이었는데, 이 작업은 상당히 간단한 작업이다. 그냥 파일에 마우스 우측버튼 누르고, 읽기전용이라 써있는 부분의 체크를 해제하면되니 말이다.  그런데 그것이 먹히지 않았고, 해서 이 파일이 있는 상단 폴더로 올라가 상단의 폴더 전체를 읽기전용 해제를 실..

!.. 일상 2024.07.23

1130회 예상.

130-160의 예상내로 들어갈것을 예상했으나, 단기 최저값 부근에 다시한번 머무르는 형태로 나타남. (이번 1129회의 105합도 단기적으로 볼땐, 지난주에 이어 다소 드문 현상)이게 바닥이라고 가정할때 , 단기적으로는 오르는 추세가 나타난다는 가정을 역시 이어간다면이번에 125~155정도(사각형 구간)으로 잡아본다. 물론 당연히 근거없는 가정일뿐이다. 문서 파일.. 역시 100만개 뽑아봄. * 7월 23일 새 기능이 추가된 Diogenes 1.1(up)버전이 업로드 되었습니다.프로그램 다운은 여기서  디오게네스 업데이트 버전(버전명수정)Diogenes1.1(up)버전 : 지난주 결과값 반영하기 추가. (7/23일 기준)자세한것은 프로그램내 공지 참조.. --------------------------..

1128회 뒷담화 및 1129회 예상번호.

합을 통한 단기적 패턴.. 재미삼아 예상해본 이번주 범위였었다. (사각형구간..) 보기좋게 빗나갔다.통상 현재의 채널 상에서 머문다고 할때, 일단 추세 자체는 내려가는 추세로 보고, (그 지난주 올라갔다고는해도) 일단 사각형 구간 한번 정도 걸쳤다 가지 않겠나 싶어 예상해 봤으나, 결과는 예상치 않게 전체 범위를 이탈할 뿐 아니라, 합 91이라는(6합 기준) 보기드문 적은 수치가 나왔다. 눈으로 봐도 확띌정도로 낮은 값이다. 이는 50주 전체 편차를 훨씬 벗어난 범위.. 다음주는 저렇게 함 예상해볼까..(사각형구간정도..)물론 큰 숫자 하나에 저 범위는 단번에 넘어 설 수 도 있을것이다. 그러나 일정한 패턴이 있다는 가정하에 그냥 한번 가정을 세워 보는거다. 보통은 박스권(녹색선 사잇구간)이라고 하는 곳..